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Abstract

The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the
joint probability of N coupled stochastic variables with the Dirichlet distribution as its asymptotic solution.
To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener-processes
in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent
on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic
process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a
fluctuating ensemble of N variables subject to a conservation principle. Similar to the multivariate Wright-
Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the
beta distribution. As a test of the results, Monte-Carlo simulations are used to evolve numerical ensembles
toward the invariant Dirichlet distribution.
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1 Objective

We develop a Fokker-Planck equation whose statistically stationary solution is the Dirichlet distri-
bution [1, 2, 3]. The system of stochastic differential equations (SDE), equivalent to the Fokker-
Planck equation, yields a Markov process that allows a Monte-Carlo method to numerically evolve
an ensemble of fluctuating variables that satisfy a unit-sum requirement. A Monte Carlo solution
is used to verify that the invariant distribution is Dirichlet.

The Dirichlet distribution is a statistical representation of non-negative variables subject to a
unit-sum requirement. The properties of such variables have been of interest in a variety of fields,
including evolutionary theory [4], Bayesian statistics [5], geology [6, 7], forensics [8], econometrics
[9], turbulent combustion [10], and population biology [11].

2 Preview of results

The Dirichlet distribution [1, 2, 3] for a set of scalars 0≤ Yα, α= 1, . . . , N − 1,
∑N−1

α=1 Yα ≤ 1, is
given by

D(Y,ω) =
Γ
(

∑N
α=1 ωα

)

∏N
α=1 Γ(ωα)

N
∏

α=1

Y ωα−1
α , (1)

where ωα>0 are parameters, YN =1−
∑N−1

β=1 Yβ, and Γ(·) denotes the gamma function. We derive
the stochastic diffusion process, governing the scalars, Yα,

dYα(t) =
bα
2

[

SαYN − (1− Sα)Yα

]

dt+
√

καYαYNdWα(t), α = 1, . . . , N − 1, (2)
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where dWα(t) is an isotropic vector-valued Wiener process [12], and bα>0, κα>0, and 0<Sα<1 are
coefficients. We show that the statistically stationary solution of Eq. (2) is the Dirichlet distribution,
Eq. (1), provided the SDE coefficients satisfy

b1
κ1

(1− S1) = · · · =
bN−1

κN−1
(1− SN−1). (3)

The restrictions imposed on the SDE coefficients, bα, κα, and Sα, ensure reflection towards the
interior of the sample space, which is a generalized triangle or tetrahedron (more precisely, a
simplex) in N−1 dimensions. The restrictions together with the specification of the N th scalar as
YN =1−

∑N−1
β=1 Yβ ensure

N
∑

α=1

Yα = 1. (4)

Indeed, inspection of Eq. (2) shows that for example when Y1=0, the diffusion is zero and the drift
is strictly positive, while if Y1=1, the diffusion is zero (YN =0) and the drift is strictly negative.

3 Development of the diffusion process

The diffusion process (2) is developed by the method of potential solutions.
We start from the Itô diffusion process [12] for the stochastic vector, Yα,

dYα(t) = aα(Y)dt+ bαβ(Y)dWβ(t), α, β = 1, . . . , N − 1, (5)

with drift, aα(Y), diffusion, bαβ(Y), and the isotropic vector-valued Wiener process, dWβ(t), where
summation is implied for repeated indices. Using standard methods given in [12] the equivalent
Fokker-Planck equation governing the joint probability, F (Y, t), derived from Eq. (5), is

∂F

∂t
= −

∂

∂Yα

[

aα(Y)F
]

+
1

2

∂2

∂Yα∂Yβ

[

Bαβ(Y)F
]

, (6)

with diffusion Bαβ = bαγbγβ. Since the drift and diffusion coefficients are time-homogeneous,
aα(Y, t) = aα(Y) and Bαβ(Y, t) = Bαβ(Y), Eq. (5) is a statistically stationary process and the
solution of Eq. (6) converges to a stationary distribution, [12] Sec. 6.2.2. Our task is to specify the
functional forms of aα(Y) and bαβ(Y) so that the stationary solution of Eq. (6) is D(Y), defined
by Eq. (1).

A potential solution of Eq. (6) exists if

∂ lnF

∂Yβ

= B−1
αβ

(

2aα −
∂Bαγ

∂Yγ

)

≡ −
∂φ

∂Yβ

, α, β, γ = 1, . . . , N − 1, (7)

is satisfied, [12] Sec. 6.2.2. Since the left hand side of Eq. (7) is a gradient, the expression on
the right must also be a gradient and can therefore be obtained from a scalar potential denoted
by φ(Y). This puts a constraint on the possible choices of aα and Bαβ and on the potential, as
φ,αβ = φ,βα must also be satisfied. The potential solution is

F (Y) = exp[−φ(Y)]. (8)

Now functional forms of aα(Y) and Bαβ(Y) that satisfy Eq. (7) with F (Y) ≡ D(Y) are sought.
The mathematical constraints on the specification of aα and Bαβ are as follows:

1. Bαβ must be symmetric positive semi-definite. This is to ensure that
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• the square-root of Bαβ (e.g. the Cholesky-decomposition, bαβ) exists, required by the
correspondence of the SDE (5) and the Fokker-Planck equation (6),

• Eq. (5) represents a diffusion, and
• det(Bαβ) 6= 0, required by the existence of the inverse in Eq. (7).

2. For a potential solution to exist Eq. (7) must be satisfied.

With F (Y) ≡ D(Y) Eq. (8) shows that the scalar potential must be

φ(Y) = −

N
∑

α=1

(ωα − 1) lnYα. (9)

It is straightforward to verify that the specifications

aα(Y) =
bα
2

[

SαYN − (1− Sα)Yα

]

, (10)

Bαβ(Y) =

{

καYαYN for α = β,

0 for α 6= β,
(11)

satisfy the above mathematical constraints, 1. and 2. Here bα > 0, κα > 0, 0 < Sα < 1, and
YN =1−

∑N−1
β=1 Yβ. Summation is not implied for Eqs. (9–11).

Substituting Eqs. (9–11) into Eq. (7) yields a system with the same functions on both sides
with different coefficients, yielding the correspondence between the N coefficients of the Dirichlet
distribution, Eq. (1), and the Fokker-Planck equation (6) with Eqs. (10–11) as

ωα =
bα
κα

Sα, α = 1, . . . , N − 1, (12)

ωN =
b1
κ1

(1− S1) = · · · =
bN−1

κN−1
(1− SN−1). (13)

For example, for N=3 one has Y = (Y1, Y2, Y3 = 1−Y1−Y2) and from Eq. (9) the scalar potential
is

− φ(Y1, Y2) = (ω1 − 1) ln Y1 + (ω2 − 1) ln Y2 + (ω3 − 1) ln(1− Y1 − Y2). (14)

Eq. (7) then becomes the system

ω1 − 1

Y1
−

ω3 − 1

Y3
=

(

b1
κ1

S1 − 1

)

1

Y1
−

[

b1
κ1

(1− S1)− 1

]

1

Y3
, (15)

ω2 − 1

Y2
−

ω3 − 1

Y3
=

(

b2
κ2

S2 − 1

)

1

Y2
−

[

b2
κ2

(1− S2)− 1

]

1

Y3
, (16)

which shows that by specifying the parameters, ωα, of the Dirichlet distribution as

ω1 =
b1
κ1

S1, (17)

ω2 =
b2
κ2

S2, (18)

ω3 =
b1
κ1

(1− S1) =
b2
κ2

(1− S2), (19)

the stationary solution of the Fokker-Planck equation (6) with drift (10) and diffusion (11) is
D(Y,ω) for N=3. The above development generalizes to N variables, yielding Eqs. (12–13), and
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reduces to the beta distribution, a univariate specialization of D for N = 2, where Y1 = Y and
Y2=1− Y , see [13].

If Eqs. (12–13) hold, the stationary solution of the Fokker-Planck equation (6) with drift (10)
and diffusion (11) is the Dirichlet distribution, Eq. (1). Note that Eqs. (10–11) are one possible way
of specifying a drift and a diffusion to arrive at a Dirichlet distribution; other functional forms may
be possible. The specifications in Eqs. (10–11) are a generalization of the results for a univariate
diffusion process, discussed in [13, 14], whose invariant distribution is beta.

The shape of the Dirichlet distribution, Eq. (1), is determined by the N coefficients, ωα. Eqs.
(12–13) show that in the stochastic system, different combinations of bα, Sα, and κα may yield the
same ωα and that not all of bα, Sα, and κα may be chosen independently to keep the invariant
Dirichlet.

4 Corroborating that the invariant distribution is Dirichlet

For any multivariate Fokker-Planck equation there is an equivalent system of Itô diffusion processes,
such as the pair of Eqs. (5–6) [12]. Therefore, a way of computing the (discrete) numerical solution
of Eq. (6) is to integrate Eq. (5) in a Monte-Carlo fashion for an ensemble [15]. Using a Monte-
Carlo simulation we show that the statistically stationary solution of the Fokker-Planck equation
(6) with drift and diffusion (10–11) is a Dirichlet distribution, Eq. (1).

The time-evolution of an ensemble of particles, each with N = 3 variables (Y1, Y2, Y3), is nu-
merically computed by integrating the system of equations (5), with drift and diffusion (10–11), for
N = 3 as

dY
(i)
1 =

b1
2

[

S1Y
(i)
3 − (1− S1)Y

(i)
1

]

dt+

√

κ1Y
(i)
1 Y

(i)
3 dW

(i)
1 (20)

dY
(i)
2 =

b2
2

[

S2Y
(i)
3 − (1− S2)Y

(i)
2

]

dt+

√

κ2Y
(i)
2 Y

(i)
3 dW

(i)
2 (21)

Y
(i)
3 = 1− Y

(i)
1 − Y

(i)
2 (22)

for each particle i. In Eqs. (20–21) dW1 and dW2 are independent Wiener processes, sampled from
Gaussian streams of random numbers with mean 〈dWα〉= 0 and covariance 〈dWαdWβ〉 = δαβdt.
400,000 particle-triplets, (Y1, Y2, Y3), are generated with two different initial distributions, displayed
in the upper-left of Figures 1 and 2, a triple-delta and a box, respectively. Each member of both
initial ensembles satisfy

∑3
α=1 Yα=1. Eqs. (20–22) are advanced in time with the Euler-Maruyama

scheme [16] with time step ∆t=0.05. Table 1 shows the coefficients of the stochastic system (20–
22), the corresponding parameters of the final Dirichlet distribution, and the first two moments
at the initial times for the triple-delta initial condition case. The final state of the ensembles are
determined by the SDE coefficients, constant for these exercises, also given in Table 1, the same
for both simulations, satisfying Eq. (19).

The time-evolutions of the joint probabilities are extracted from both calculations and displayed
at different times in Figures 1 and 2. At the end of the simulations two distributions are plotted at
the bottom-right of both figures: the one extracted from the numerical ensemble and the Dirichlet
distribution determined analytically using the SDE coefficients – in excellent agreement in both
figures. The statistically stationary solution of the developed stochastic system is the Dirichlet
distribution.

For a more quantitative evaluation, the time evolution of the first two moments, µα = 〈Yα〉=
∫ 1
0

∫ 1
0 YαF (Y1, Y2)dY1dY2, and 〈yαyβ〉 = 〈(Yα−〈Yα〉)(Yβ−〈Yβ〉)〉, are also extracted from the nu-

merical simulation with the triple-delta-peak initial condition as ensemble averages and displayed
in Figures 3 and 4. The figures show that the statistics converge to the precise state given by the
Dirichlet distribution that is prescribed by the SDE coefficients, see Table 1.
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The solution approaches a Dirichlet distribution, with non-positive covariances [2], in the sta-
tistically stationary limit, Figure 4(b). Note that during the evolution of the process, 0<t.80, the
solution is not necessarily Dirichlet, but the stochastic variables sum to one at all times. The point
(Y1, Y2), governed by Eqs. (20–21), can never leave the (N−1)-dimensional (here N = 3) convex
polytope and by definition Y3=1− Y1 − Y2. The rate at which the numerical solution converges to
a Dirichlet distribution is determined by the vectors bα and κα.

The above numerical results confirm that starting from arbitrary realizable ensembles the so-
lution of the stochastic system converges to a Dirichlet distribution in the statistically stationary
state, specified by the SDE coefficients.

5 Relation to other diffusion processes

It is useful to relate the Dirichlet diffusion process, Eq. (2), to other multivariate stochastic diffusion
processes with linear drift and quadratic diffusion.

A close relative of Eq. (2) is the multivariate Wright-Fisher (WF) process [11], used extensively
in population and genetic biology,

dYα(t) =
1

2
(ωα − ωYα)dt+

N−1
∑

β=1

√

Yα(δαβ − Yβ)dWαβ(t), α = 1, . . . , N − 1, (23)

where δαβ is Kronecker’s delta, ω=
∑N

β=1 ωβ with ωα defined in Eq. (1) and, YN =1−
∑N−1

β=1 Yβ.
Similarly to Eq. (2), the statistically stationary solution of Eq. (23) is the Dirichlet distribution
[17]. It is straightforward to verify that its drift and diffusion also satisfy Eq. (7) with F ≡ D ,
i.e. WF is a process whose invariant is Dirichlet and this solution is potential. A notable difference
between Eqs. (2) and (23), other than the coefficients, is that the diffusion matrix of the Dirichlet
diffusion process is diagonal, while that of the WF process it is full.

Another process similar to Eqs. (2) and (23) is the multivariate Jacobi process, used in econo-
metrics,

dYα(t) = a(Yα − πα)dt+
√

cYαdWα(t)−
N−1
∑

β=1

Yα

√

cYβdWβ(t), α = 1, . . . , N (24)

of Gourieroux & Jasiak [9] with a < 0, c > 0, πα > 0, and
∑N

β=1 πβ = 1.
In the univariate case the Dirichlet, WF, and Jacobi diffusions reduce to

dY (t) =
b

2
(S − Y )dt+

√

κY (1− Y )dW (t), (25)

see also [13], whose invariant is the beta distribution, which belongs to the family of Pearson
diffusions, discussed in detail by Forman & Sorensen [14].

6 Summary

The method of potential solutions of Fokker-Planck equations has been used to derive a transport
equation for the joint distribution of N fluctuating variables. The equivalent stochastic process,
governing the set of random variables, 0≤Yα, α=1, . . . , N − 1,

∑N−1
α=1 Yα≤1, reads

dYα(t) =
bα
2

[

SαYN − (1− Sα)Yα

]

dt+
√

καYαYNdWα(t), α = 1, . . . , N − 1, (26)

where YN =1−
∑N−1

β=1 Yβ, and bα, κα and Sα are parameters, while dWα(t) is an isotropic Wiener
process with independent increments. Restricting the coefficients to bα>0, κα>0 and 0<Sα<1,
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and defining YN as above ensure
∑N

α=1 Yα =1 and that individual realizations of (Y1, Y2, . . . , YN )
are confined to the (N−1)-dimensional convex polytope of the sample space. Eq. (26) can therefore
be used to numerically evolve the joint distribution of N fluctuating variables required to satisfy a
conservation principle. Eq. (26) is a coupled system of nonlinear stochastic differential equations
whose statistically stationary solution is the Dirichlet distribution, Eq. (1), provided the coefficients
satisfy

b1
κ1

(1− S1) = · · · =
bN−1

κN−1
(1− SN−1). (27)

In stochastic modeling, one typically begins with a physical problem, perhaps discrete, then
derives the stochastic differential equations whose solution yields a distribution. In this paper
we reversed the process: we assumed a desired stationary distribution and derived the stochastic
differential equations that converge to the assumed distribution. A potential solution form of the
Fokker-Planck equation was posited, from which we obtained the stochastic differential equations
for the diffusion process whose statistically stationary solution is the Dirichlet distribution. We
have also made connections to other stochastic processes, such as the Wright-Fisher diffusions of
population biology and the Jacobi diffusions in econometrics, whose invariant distributions possess
similar properties but whose stochastic differential equations are different.
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Fig. 1: Time evolution of the joint probability, F (Y1, Y2), extracted from the numerical solution of
Eqs. (20–22). The initial condition is a triple-delta distribution, with unequal peaks at the
three corners of the sample space. At the end of the simulation, t = 140, the solid lines are
that of the distribution extracted from the numerical ensemble, dashed lines are that of a
Dirichlet distribution to which the solution converges in the statistically stationary state,
implied by the constant SDE coefficients, sampled at the same heights.



References 9

ω1 = 5
ω2 = 2
ω3 = 3

S1 = 5/8
S2 = 2/5
b1 = 1/10
b2 = 3/2
κ1 = 1/80
κ2 = 3/10

t = 0

t = 5

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0.75

0.25

t = 160

0.25 0.5 0.75 1

t = 1

0.25 0.5 0.75 1
0

0.5

1

0.25

0.5

0.75

0

1

Y1

Y
2

Y
2

Y
2

Y
2

Y1

Y1

Y1

Fig. 2: Time evolution of the joint probability, F (Y1, Y2), extracted from the numerical solution of
Eqs. (20–22). The top-left panel shows the initial condition: a box with diffused sides. By
t = 160, bottom-right panel, the distribution converges to the same Dirichlet distribution
as in Figure 1.
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Tab. 1: Initial and final states of the Monte-Carlo simulation starting from a triple-delta. The
coefficients, b1, b2, S1, S2, κ1, κ2, of the system of SDEs (20–22) determine the distribution
to which the system converges. The Dirichlet parameters, implied by the SDE coefficients
via Eqs. (17-19), are in brackets. The corresponding statistics are determined by the well-
known formulae of Dirichlet distributions [2].

Initial state: triple-delta,
see Figure 1

SDE coefficients and the statistics of their implied Dirichlet
distribution in the stationary state

b1 = 1/10 b2 = 3/2 (ω1 = 5)

S1 = 5/8 S2 = 2/5 (ω2 = 2)

κ1 = 1/80 κ2 = 3/10 (ω3 = 3)

〈Y1〉0 ≈ 0.05 〈Y1〉s = 1/2

〈Y2〉0 ≈ 0.42 〈Y2〉s = 1/5

〈Y3〉0 ≈ 0.53 〈Y3〉s = 3/10

〈y21〉0 ≈ 0.03 〈y21〉s = 1/44

〈y22〉0 ≈ 0.125 〈y22〉s = 4/275

〈y23〉0 ≈ 0.13 〈y23〉s = 21/1100

〈y1y2〉0 ≈ −0.012 〈y1y2〉s = −1/110

〈y1y3〉0 ≈ −0.017 〈y1y3〉s = −3/220

〈y2y3〉0 ≈ −0.114 〈y2y3〉s = −3/550


	Objective
	Preview of results
	Development of the diffusion process
	Corroborating that the invariant distribution is Dirichlet
	Relation to other diffusion processes
	Summary

